A page for collecting resources and ideas related to do-it-your-self, civic / citizen / grassroot...
Public Lab is an open community which collaboratively develops accessible, open source, Do-It-Yourself technologies for investigating local environmental health and justice issues.
2 CURRENT | briandegger |
May 11, 2013 07:40
| over 11 years ago
A page for collecting resources and ideas related to do-it-your-self, civic / citizen / grassroots science approaches to biology research. General ImagingQuestion: "If you could set up a device that cost around $100 (cheap webcam, filter, Rasbperry Pi, power cable, ethernet cable, SD card) that would capture visible and near-infrared wavelengths (and perhaps some UV, too), and it could visually monitor e.g. a petri dish in the lab, capturing the spectrum every X minutes (storing it on the SD card, or putting it online) ... what might that be used for?"
Flow cytometryBasically you have a number of antibodies that bind to specific proteins. These antibodies then have a fluorophore conjugated to them that have specific exititation/emission spectra. Stains and the excitation-emission spectrum of the molecules themselves can also be used. The flow cytometer is designed so each drop should (but not always the case) each contain one cell. You analyze the resulting data to see how many cells contain X compound, Y compound, Z compound, what cells are in your sample, how many cells etc. If you had a heterogeneous mixture of cells you wouldn't be able to tell how many cells contain protein X over Y, etc, count them, nor see what different cell types are in your sample. However, if you had a homogeneous mixture of cells that started from a single colony (lets say we are using bacteria for the moment) you would be able to tell if they contain certain proteins or compounds just by going into a dark room and using a flashlight and LEDs calibrated to emit your excitation frequency, as you mentioned. You could actually roughly determine how many cells contained a certain compound. If you used a microscope with a hemacytometer (and your light emitted the frequency you needed for excitation) then you could count your cells of interest, establish a ratio of cells containing the compound your interested in, and statistically determine how many cells in your sample contain protein x,y,z, etc. Though, I just now realized I've just described fluorescence microscopy. But maybe there is potential here for creating a really cheap fluorescence microscope - they're not exactly cheap. Spectroscopy
I've only ever used spectroscopy to quantify DNA and determine protein contamination. I've also used it for colorimetric assays. However, I'm sure there are a very wide range of uses for spectroscopy that I'm not aware of or haven't thought about. One thing that might be useful for me to generate some more interest in my group is if I could report back to people, in laymens terms, why spectroscopy is useful and important. Generally when I've used spectroscopy to identify the quantity of some compound I have used samples that have been purified and only contains that single compound as an extra component over my blank. In the case of investigating DNA vs Protein in my sample it has gone through a DNA purification process where "ideally" the sample should contain DNA with maybe trace amounts of proteins. Research questions
Groups / Resources
|
Revert | |
1 | donblair |
May 10, 2013 15:26
| over 11 years ago
A page for collecting resources and ideas related to do-it-your-self, civic / citizen / grassroots science approaches to biology research. General ImagingQuestion: "If you could set up a device that cost around $100 (cheap webcam, filter, Rasbperry Pi, power cable, ethernet cable, SD card) that would capture visible and near-infrared wavelengths (and perhaps some UV, too), and it could visually monitor e.g. a petri dish in the lab, capturing the spectrum every X minutes (storing it on the SD card, or putting it online) ... what might that be used for?"
Flow cytometryBasically you have a number of antibodies that bind to specific proteins. These antibodies then have a fluorophore conjugated to them that have specific exititation/emission spectra. Stains and the excitation-emission spectrum of the molecules themselves can also be used. The flow cytometer is designed so each drop should (but not always the case) each contain one cell. You analyze the resulting data to see how many cells contain X compound, Y compound, Z compound, what cells are in your sample, how many cells etc. If you had a heterogeneous mixture of cells you wouldn't be able to tell how many cells contain protein X over Y, etc, count them, nor see what different cell types are in your sample. However, if you had a homogeneous mixture of cells that started from a single colony (lets say we are using bacteria for the moment) you would be able to tell if they contain certain proteins or compounds just by going into a dark room and using a flashlight and LEDs calibrated to emit your excitation frequency, as you mentioned. You could actually roughly determine how many cells contained a certain compound. If you used a microscope with a hemacytometer (and your light emitted the frequency you needed for excitation) then you could count your cells of interest, establish a ratio of cells containing the compound your interested in, and statistically determine how many cells in your sample contain protein x,y,z, etc. Though, I just now realized I've just described fluorescence microscopy. But maybe there is potential here for creating a really cheap fluorescence microscope - they're not exactly cheap. Spectroscopy
I've only ever used spectroscopy to quantify DNA and determine protein contamination. I've also used it for colorimetric assays. However, I'm sure there are a very wide range of uses for spectroscopy that I'm not aware of or haven't thought about. One thing that might be useful for me to generate some more interest in my group is if I could report back to people, in laymens terms, why spectroscopy is useful and important. Generally when I've used spectroscopy to identify the quantity of some compound I have used samples that have been purified and only contains that single compound as an extra component over my blank. In the case of investigating DNA vs Protein in my sample it has gone through a DNA purification process where "ideally" the sample should contain DNA with maybe trace amounts of proteins. Research questions
Groups / Resources
|
Revert | |
0 | donblair |
May 10, 2013 15:23
| over 11 years ago
A page for collecting resources and ideas related to do-it-your-self, civic / citizen / grassroots science approaches to biology research. General ImagingQuestion: "If you could set up a device that cost around $100 (cheap webcam, filter, Rasbperry Pi, power cable, ethernet cable, SD card) that would capture visible and near-infrared wavelengths (and perhaps some UV, too), and it could visually monitor e.g. a petri dish in the lab, capturing the spectrum every X minutes (storing it on the SD card, or putting it online) ... what might that be used for?"
Flow cytometryBasically you have a number of antibodies that bind to specific proteins. These antibodies then have a fluorophore conjugated to them that have specific exititation/emission spectra. Stains and the excitation-emission spectrum of the molecules themselves can also be used. The flow cytometer is designed so each drop should (but not always the case) each contain one cell. You analyze the resulting data to see how many cells contain X compound, Y compound, Z compound, what cells are in your sample, how many cells etc. If you had a heterogeneous mixture of cells you wouldn't be able to tell how many cells contain protein X over Y, etc, count them, nor see what different cell types are in your sample. However, if you had a homogeneous mixture of cells that started from a single colony (lets say we are using bacteria for the moment) you would be able to tell if they contain certain proteins or compounds just by going into a dark room and using a flashlight and LEDs calibrated to emit your excitation frequency, as you mentioned. You could actually roughly determine how many cells contained a certain compound. If you used a microscope with a hemacytometer (and your light emitted the frequency you needed for excitation) then you could count your cells of interest, establish a ratio of cells containing the compound your interested in, and statistically determine how many cells in your sample contain protein x,y,z, etc. Though, I just now realized I've just described fluorescence microscopy. But maybe there is potential here for creating a really cheap fluorescence microscope - they're not exactly cheap. Spectroscopy
I've only ever used spectroscopy to quantify DNA and determine protein contamination. I've also used it for colorimetric assays. However, I'm sure there are a very wide range of uses for spectroscopy that I'm not aware of or haven't thought about. One thing that might be useful for me to generate some more interest in my group is if I could report back to people, in laymens terms, why spectroscopy is useful and important. Generally when I've used spectroscopy to identify the quantity of some compound I have used samples that have been purified and only contains that single compound as an extra component over my blank. In the case of investigating DNA vs Protein in my sample it has gone through a DNA purification process where "ideally" the sample should contain DNA with maybe trace amounts of proteins. Research questions
|
Revert |