S.A.L.O.R. (Submersible Autonomous Liquid Oxygen Reporter)
Thais C. - Daniel S. - Leif D.
As part of the Umass Amherst makers class we are attempting to take the OpenROV underwater robot ( www.openrov.com ) and make it an autonomous underwater craft that will collect data on bodies of water related to agal bloom.
Our Work This started out as a term project in a Natural Resources & Conservation class called "Applications in Do-it-Together, Environmental Monitoring Technologies". The aim of the class was to utilize inexpensive sensors and microcontroller-based embedded systems the monitor the environment or interact with it in a positive way.
Our initial idea was to build a boat that would use a localized decision-making algorithm (similar to a Roomba) to traverse a pond or lake while sampling oxygen and nitrogen levels in the water with sensors. The data collected would help up us to predict possible invasive cyannobacteria "algae" blooms that are choking native ecosystems.
The project has taken and interesting turn, though. Through the enthusiasm of our professor, Charles Schweik, as well as his faculty connections, three research professors from the Department of Environmental Conservation who study fish ecology and conservation have increased the scope of the project. With the help of their funding, we have purchased a kit from OpenROV. Once S.A.L.O.R. has been built and tested, we will hand over the robot to them for use in their research efforts.
Attempts and Results We are currently in the late stages of the build process and the early stages of initiating the computer control systems.
In addition to the hardware that is included in the kit, we will attach a sensor array that will give real-time temperature & depth readings and also direction & orientation using a magnetic compass and three accelerometers. Should the professors allow us to play with their toy, we will continue our attempts at predicting algal bloom.
Questions and Next Steps Further research may involve closed-loop orientation control modeling to increase the stability of the ROV. This will allow inexperienced pilots to navigate S.A.L.O.R. with greater control and accuracy.