Kite anemometry is the use of a kite as a sensor to measure the wind velocity, vector and turbulence. It is differentiated from other methods of kite meteorological data gathering in that information is obtained by observing the kite and the forces acting on it. This typically means that all substantial instrumentation is on the ground versus being flown on the kite as a payload.
In different configurations a kite anemometer can be used to examine wind speed at altitude, turbulence, and wind shear. The math behind a kite anemometer-- equations relating the pull of a kite to wind speed-- can also be used to determine the payload capacity of a kite in a specific wind speed.
You can contribute to this project by:
* Expanding our documentation of kite anemometry research by reading research [the bibliography](/wiki/kite-anemometers#bibliography) on this page and posting your notes on it with the tag "[kite-anemometer](https://publiclab.org/tag/kite-anemometer)", or reading and commenting on tagged research notes.
* Replicating the [TALA kite anemometer kit](https://github.com/mathewlippincott/TALA) and documenting your use of it on with the tag "[kite-anemometer](https://publiclab.org/tag/kite-anemometer)." If you record your experiences elsewhere, please contact us and share.
* Improving the documentation on kite wind speed meter models in the [Kite Wind Speed Meter](./Kite-Wind-Speed-Meter) Github repository, as well as adding applications of those models.
* Adding your comments to [open issues in the TALA Github repository](https://github.com/mathewlippincott/TALA/issues).
Forking [the TALA repository]((https://github.com/mathewlippincott/TALA) and improving the design documentation, assembly instructions, or to add hardware or software for acquiring and interpreting data.
###Background
In the late 70's a number of patents were made regarding a system in which a series of kites were to be used to monitor conditions near airports. This system became known as the Tethered Aerodynamic Lifting Anemometer (TALA) patented under US Patents [3,767,145](http://www.google.com/patents/US3767145), [4,058,010](http://www.google.com/patents/US4058010), [4,152,933](http://www.google.com/patents/US4152933) & [4,221,351](http://www.google.com/patents/US4221351). Inspired by this device, further research into it and the general concept of kite anemometry was conducted throughout the 1980's and early 1990's. No other commercial kite anemometers other than the TALA were produced.
An overview of the system is provided by @Ecta64 in these videos:
##The TALA high wind range kite and tail
[![TALAannotated.jpg](https://publiclab.org/system/images/photos/000/019/208/large/TALAannotated.jpg)](https://publiclab.org/system/images/photos/000/019/208/original/TALAannotated.jpg)
##Wind direction & turbulence visualization:
Another method to utilize the Tethered Aerodynamic Lifting Anemometer kite is to purchase some surveyors tape (preferably a high visibility color for the given sky condition). A 10 m length of surveyors tape will stay within one or 2° of horizontal once the wind is over 2 m/s. You can attach the length of surveyors tape several meters below the kite and then again at five or 10 m below your first (or more) streamer/s if you wish to monitor multiple altitudes. The streamers can be attached a variety of ways but it is recommended (unless you are using Kevlar line) to put a knot at the end of the streamer and "larkshead-ing" a small closed loop of string at the interval you wish to measure before you fly. Once the kite is aloft all that needs to be done is larkshead the streamer knot onto the already placed closed loop. The following video gives an overview of how to add items to the flight line but since TALA can be flown in high winds it would be advisable to use the methods in the video prior to flight.
All that is left is to fly the kite with the streamers attached and then photographically record the streamer/s in-flight. This will yield instantaneous results of wind vectors at one or more altitudes and by monitoring the behavior of the streamer it is possible to analyze turbulence. A rolling or curling of the streamer will indicate turbulence.
While the manual on the original system does not mention this, it is safe to assume that multiple lengths of 10 m x 1" wide streamers would generate a significant amount of drag and make wind velocity measurements utilizing the spring scale inaccurate. This is apparently meant as a separate activity from anemometry. Data analysis is simple because it is photographic and should you also have a video camera or video mode on your particular camera you can monitor the wind turbulence and vector over time. The directions of the streamers can be compared with compass readings made while flying the kite and that is pretty much all there is to it.
##Observing wind vector and shear
###Bibliography
Most of the following papers treat the kite in a simplified manner, as a flat plane inclined into the wind. Those dynamics are explained in more depth in the book:
Komura, Hirotsugu & Ito, Toshio. "Kites: The Science and the Wonder" Japanese Publications Inc. Tokyo: 1983. ["Tako No Kagaku" Shogakukan Publishing. Tokyo: 1979]
__General Tethered Anemometry:__
Chow, W.Y, & R.H. Kirchhoff. “Tethersonde and Kite Anemometer Evaluation.” PNL-6708, Pacific Northwest Laboratory. Subcontractor Report for US DOE. Richland: October 1988.
[Link](http://www.osti.gov/scitech/biblio/6884455/)
Hobbs, Stephen E. “A Quantitative Study of Kite Performance in Natural Wind with Application to Kite Anemometry.” PhD Thesis, Ecological Physics Research Group, Cranfield Institute of Technology. Cranfield: April 1986.
[Link](https://dspace.lib.cranfield.ac.uk/bitstream/1826/918/2/sehphd2a.pdf)
__TALA Anemometry:__
Woodhouse, Charles F. “Tethered Aerodynamically Lifting Anemometer (TALA).” The Boulder Low-level Intercomparison Experiment, NOAA/ERL Wave Propagation Laboratory, National Center for Atmospheric Research (NCAR). Boulder: June 1980.
[Link](https://archive.org/details/boulderlowleveli00kaim)
Kunkel, Kenneth E. “Evaluation of a Tethered Kite Anemometer.” ASL-TR-0076, US Army Atmostpheric Sciences Laboratory. White Sands: February 1981.
Kullgren, Thomas E. Finley, Thomas C. Boyce, Steven C. “Academy Wind Site Survey: Methodologies for use by the Air Force. Final Report, May 1977-December 1980.” AD-A129 581, Department of Engineering Mechanics and Department of Civil Engineering, United States Air Force Academy. Tyndall Air Force Base: 1983.
[Link](https://publiclab.org/system/images/photos/000/010/724/original/TALA_USAF_site.pdf)
Daniels, Anders. “Turbulence Assessment at Potential Turbine Sites.” Windpower ’96 - Proceedings of the American Wind Energy Association, p 369-378. Denver: June 1996.
[Link](http://www.osti.gov/scitech/biblio/447473-turbulence-assessment-potential-turbine-sites)
__Studies conducted with the TALA:__
Taylor P.A. & H.W. Teunissen. “Askervein ’82: Report on the September/October 1982 Eperiment to Study Boundary-Layer Flow over Akervein, South Uist.” MSRB-83-8, Meteorological Services Research Branch, Amospheric Environment Service. Downsview: November 1983.
Taylor, P.A. & H.W. Teunissen. “The Askervein Hill Project: Report on the September/October 1983 Main Field Experiment.” MSRB-84-6, Meteorological Services Research Branch, Amospheric Environment Service. Downsview: December 1985.
Snyder W.H, Lawson R.E., Thompson R.S, & Holzworth G.C. “Observations of Flow Around Cinder Cone Butte, Idaho.” EPA-GCC17-SC-150, US Environmental Protection Agency. Research Triangle Park: June 1980.
[Link](http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000XGYQ.txt)
Neal, D. “Wind Flow and Structure over Gebbies Pass, New Zealand.” Thesis, University of Canterbury New Zealand. Canterbury: December 1979.
[Link](http://ir.canterbury.ac.nz/handle/10092/7568)
Baker, Robert W. & Hewson, E. Wendell. “Network Wind Power Over the Pacific Northwest, Progress Report October 1979-September 1980.” DOE/BP-58. Bonneville Power Administration. Portland: October 1980.
[Link](http://www.osti.gov/scitech/biblio/6373484)
Zambrano, T.G. “Assessing the Local Windfield with Instrumentation.” PNL-3622, Pacific Northwest Laboratory. Richland: October 1980.
[Link](http://www.osti.gov/scitech/biblio/6465288/)
-----------
__Further documents unretrieved:__
__Aerodynamics:__
Huang, K.H. ; Shieh, C.F. ; Frost, W. “Analysis of a kite anemometer: final report. REPORT # DOE/ET/20242-81/2” DE82009058 . FWG Associates, Inc., Tullahoma, TN (USA): December 1981.
[Link](http://www.osti.gov/scitech/biblio/5417476)
Kirchhoff, R. H., F. C. Kaminsky, and S. D. Pelmulder. "Measurement of atmospheric turbulence using kites." Ninth ASME Wind Energy Symposium- Presented at the Thirteenth Annual Energy-Sources Technology Conference and Exhibition, New Orleans, LA, USA, 01/14-18/90. 1990.
__Field Use:__
A low level wind measurement technique for wind turbine generator siting. Baker, R. W.; Whitney, R. L.; Hewson, E. W. Wind Engineering, vol. 3, no. 2, 1979, p. 107-114.
The Kettles Hill Project: Field observations, wind-tunnel simulations and numerical model predictions for flow over a low hill. Boundary-Layer Meteorology, 1988, Volume 43, Number 4, Page 309, J. R. Salmon, H. W. Teunissen, R. E. Mickle, Show All (4)
The influence of model scale on a wind-tunnel simulation of complex terrain. D. Neal, Vickers Dawson, Crayford, Kent, Gt. Britain. Journal of Wind Engineering and Industrial Aerodynamics Volume 12, Issue 2, July 1983, Pages 125-143
Full-scale measurements of the wind regime over a saddle, and correlation with wind-tunnel tests. D. Neal Boundary-Layer Meteorology March 1982, Volume 22, Issue 3, pp 351-371
Note: A thermally stable tension meter for atmospheric soundings using kites
K. T. Walesby1,a) and R. G. Harrison1,b). Rev. Sci. Instrum. 81, 076104 (2010)
Sherry, B. J. "The Use of a Flagpole in Calibrating Kite Anemometers and also for Observing at Close Range the Behavior of Kites in the Air." Monthly Weather Review 44 (1916): 327.
The Askervein hill project: A finite control volume prediction of three-dimensional flows over the hill. G. D. Raithby, G. D. Stubley, P. A. Taylor. Boundary-Layer Meteorology
May 1987, Volume 39, Issue 3, pp 247-267
Wake measurements behind a large horizontal axis wind turbine generator. Robert W. Baker, Stel N. Walker. Solar Energy Volume 33, Issue 1, 1984, Pages 5-12
Case study of wind turbine generator siting in complex terrain. Vachon, W.A. ; Downey, W.T. ; Madio, F.R.Proc. Annu. Meet. - Am. Sect. Int. Sol. Energy Soc.; (United States); Journal Volume: 3.2; Conference: American section of the International Solar Energy Society conference, Phoenix, AZ, USA, 2 Jun 1980
EAGAN, RC, L. E. ANNEN-Dames, and Park Ridge Moore. "DATA ACQUISITION AND ANALYSIS FOR WIND TURBINE SITING IN THE UPPER MID WEST." Second ASME Wind Energy Symposium: presented at 6th Annual Energy-Sources Technology Conference and Exhibition, Houston, Texas, January 30-February 3, 1983. American Society of Mechanical Engineers, 1983.